Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21.
نویسندگان
چکیده
The role of p53 in tissue protection is not well understood. Loss of p53 blocks apoptosis in the intestinal crypts following irradiation but paradoxically accelerates gastrointestinal (GI) damage and death. PUMA and p21 are the major mediators of p53-dependent apoptosis and cell-cycle checkpoints, respectively. To better understand these two arms of p53 response in radiation-induced GI damage, we compared animal survival, as well as apoptosis, proliferation, cell-cycle progression, DNA damage, and regeneration in the crypts of WT, p53 knockout (KO), PUMA KO, p21 KO, and p21/PUMA double KO (DKO) mice in a whole body irradiation model. Deficiency in p53 or p21 led to shortened survival but accelerated crypt regeneration associated with massive nonapoptotic cell death. Nonapoptotic cell death is characterized by aberrant cell-cycle progression, persistent DNA damage, rampant replication stress, and genome instability. PUMA deficiency alone enhanced survival and crypt regeneration by blocking apoptosis but failed to rescue delayed nonapoptotic crypt death or shortened survival in p21 KO mice. These studies help to better understand p53 functions in tissue injury and regeneration and to potentially improve strategies to protect or mitigate intestinal damage induced by radiation.
منابع مشابه
DNA Damage and Cellular Stress Responses Uncoupling p53 Functions in Radiation-Induced Intestinal Damage via PUMA and p21
The role of p53 in tissue protection is not well understood. Loss of p53 blocks apoptosis in the intestinal crypts following irradiation but paradoxically accelerates gastrointestinal (GI) damage and death. PUMA and p21 are the major mediators of p53-dependent apoptosis and cell-cycle checkpoints, respectively. To better understand these two arms of p53 response in radiation-induced GI damage, ...
متن کاملPUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome.
Radiation is one of the most effective cancer treatments. However, gastrointestinal (GI) syndrome is a major limiting factor in abdominal and pelvic radiotherapy. The loss of crypt stem cells or villus endothelial cells has been suggested to be responsible for radiation-induced intestinal damage. We report here a critical role of the BH3-only protein p53 upregulated modulator of apoptosis (PUMA...
متن کاملPharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation
Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival a...
متن کاملPUMA mediates the apoptotic response to p53 in colorectal cancer cells.
Although several genes that might mediate p53-induced apoptosis have been proposed, none have previously been shown to play an essential role in this process through a rigorous gene disruption approach. We used a gene-targeting approach to evaluate p53-mediated death in human colorectal cancer cells. Expression of p53 in these cells induces growth arrest through transcriptional activation of th...
متن کاملHLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53.
In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2011